China's Energy-efficient Vehicles Technology Roadmap¹

Source: 1. China Automotive Engineering Institute, <Energy Saving and New Energy Vehicle Technology Roadmap>, Oct. 2016

Energy-efficient Vehicles Technology Roadmap¹

General Strategy

- Focus on hybrid technologies, support powertrain optimization and upgrades, friction reduction and advanced electronic and electrical technologies, and comprehensively enhance energy-saving technologies and fuel economy in traditional vehicles.
- Combine structural and technical energy conservation, and accelerate promoting compact cars and smaller to significantly increase the proportion of small cars.
- Target natural gas vehicles as an initial initiative, moderately develop the alternative fuel vehicles, and increase low carbon and diversification in fuels to reduce China's dependence on petroleum.

Energy-efficient Vehicles_ Goals, Paths and Priorities

Development Goals

Average fuel consumption of passenger cars:

2020: 5.0L/100km

2025: 4.0L/100km

2030: 3.2L/100km

Average fuel consumption of commercial cars compared to 2015:

• 2020: reducing 10%

2025: reducing 15%

• 2030: reducing 20%

Market share of energyefficient cars:

• 2020: 30%

• 2025: 40%

• 2030: 50%

Technology Paths

Energy-efficient passenger cars:

- Improve the engine thermal efficiency
- Optimize the powertrain match
- Reduce heat loss
- Reduce energy loss
- Improve the efficiency of hybrid systems

Energy-efficient commercial cars:

- Improve the thermal efficiency of diesel engines
- Reduce energy loss
- Hybrid systems

Development Priorities

- Combustion mechanism of advanced ICEs*
- Autonomous control systems
- Entirely variable valve technologies
- Waste energy recovery
- Engine thermal management
- Automation, high efficiency and core-component technologies of transmissions
- Low friction
- Superchargers and their applications
- Advanced fuel injection systems
- 48V systems
- Hybrid engines
- Hybrid electromechanical coupling technologies

Remark:

*: ICE is the abbreviation of Internal Combustion Engine

Energy-efficient Vehicles_ Pathways to Energy Conservation

Six pathways to energy conservation for passenger cars: lightweight and miniaturization, vigorously develop hybrid engines, powertrain optimization and upgrade, electronic and electrical conservation, friction reduction, and alternative fuels.

Lightweight and Miniaturization:

- Over 55% in 2020, 60% in 2025, and 70% in 2030 of the compact cars and the smaller
- Accelerate the application of lightweight products, technologies and processes.

Vigorously Develop Hybrid Engines:

- Market share up to 8% and fuel consumption as low as 4.0L/100km in 2020
- 20% and 3.6L/100km in 2025
- 25% and 3.3L/100km in 2030

Powertrain Optimization and Upgrade:

- Engine thermal efficiency up to 40% in 2020
- 44% in 2025
- 48% in 2030 by HCCI* technology

Electronic and Electrical Conservation:

- Develop 48V system
- Standardize the electric air conditioning, EPS technology etc.
- Study on sustained electricity loss

Friction Reduction:

- Lower rolling resistance in the short term
- Lower inner resistance in the middle term
- Lower wind resistance in the long term

Alternative Fuels:

- Mainly use natural gas
- Up to 8% in 2030

Remark:

*: HCCI is the abbreviation of Homogeneous Charge Compression Ignition

Energy-efficient Vehicles_ Pathways to Energy Conservation

Six pathways to energy conservation for commercial cars: powertrain optimization and upgrade, gradually develop hybrid engines, aerodynamic optimization, energy reduction, alternative fuels and continuously promote lightweight.

Powertrain Optimization and Upgrade:

- Engine thermal efficient up to 50% through developing highpressure, low-speed and high-twist engines, optimizing electric control, reducing rear axle ratio
- 52% through engine thermal management technologies
- 55% through the Rankine cycle

Alternative Fuels:

- Moderately and stably use natural gas
- Demonstration and pilot applications

Continuously Promote Lightweight

Aerodynamic Optimization:

- Low rolling resistance in the short term
- Streamlined design and optimization in the mid-long term

Gradually Develop Hybrid Engines:

- Study on system configuration and core components
- Gradually extend to commercial cars with lower cost in the mid-long term

Energy Reduction:

- Track the new energy-saving technologies, such as lined up vehicles and improved transport efficiency
- Gradually applied when the intelligent network technology is mature

Energy-efficient Vehicles_ Technology Innovation Requirements

Project Types	Technology Innovation Requirements	Priority Measures
Foundation	New engine combustion theoryNew optimized engine structure designNew fuel application	 New optimized engine structures and combustion theory High efficient powertrains Advanced electronic and electrical technologies Promotion and demonstration of the advanced energy-saving cars Common platforms with electronic control, test and calibration
Application	 New engines and the core components High efficient transmissions and the core components Hybrid engines Commercial powertrains carrying medium and large diesels 48V systems and the core components Vehicle power management systems Intelligent, electronic and low-energy accessory systems Key electronic and electrical equipment to improve the operating efficiency in commercial cars 	
Demonstration and industrialization	 Industrialization and application of key technologies and key assemblies Promotion and demonstration of the advanced energy-saving cars 	
Common platform	 Develop platforms with electronic control, test and calibration Develop the control strategy software, models, hardware-in-the-loop testing, intelligent calibration 	

